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ABSTRACT
In this article, we revisit the concept of strong differentiability of real
functions of one variable, underlying the concept of differentiability.
Our discussion is guided by the Straddle Lemma, which plays a key
role in this context. The proofs of the results presented are designed
tomeet a youngaudience inmathematics, typical of students in a first
course of Real Analysis or an honors-level Calculus course.

1. Introduction

One of the most powerful illustrations of the concept of the derivative to newcomers to
Calculus is the traditional picture of a secant line crossing the graph of a function f at two
points P and Q, and how this secant line becomes tangent to the graph when we keep P
fixed and slide Q toward P along the graph, as shown in Figure 1.

Conveniently, when trying to compute the slope of the secant line in this picture, the
situation translates almost perfectly into the limit that defines the derivative of f at x0:

lim
x→x0

f (x) − f (x0)
x − x0

. (1)

Some minor details differ; of course, x may approach x0 from either side in (1), while in
Figure 1 the point Q is almost always pictured to come toward P from the right-hand
side – which corresponds to x approaching x0 with values greater than x0 – but it is just
as easy to imagine a similar picture where Q starts at the left-hand side of P.

A geometrically inclined beginner might ask why not adopt a more symmetrical
approach and make points P and Q straddle toward each other, creating a tangent line
at whatever point P and Q end up meeting – perhaps even fixing a point T beforehand
between P andQwhere the desired tangent line should touch the graph. Figure 2 illustrates
this approach.

The reason why we do not see this alternate geometric picture discussed in Calculus
books becomes clear when we consider the analytical analogue of Figure 2. We need to
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Figure . Usual geometric view of a tangent line.
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Figure . Alternate geometric view of a tangent line.

consider the limit

lim
x,y→x0

f (x) − f (y)
x − y

, (2)

where now x and y are allowed to approach x0 independently, subject only to the restriction
that we never have x = y. There are some complications with this new expression as com-
pared to (1). First, (2) is a limit in two variables, which requires a discussion of this more
general kind of limit; second, (2) produces a more restrictive kind of differentiability than
(1); a function for which the limit (2) exists is termed strongly differentiable – a notion that
is related to f being continuously differentiable – thus not quite the basic differentiability
that one seeks to explore in a first course.

If, however, following the geometric spirit of Figure 2, we insist that x and y always
approach x0 from opposite sides in (2), we do obtain a notion of derivative which is equiv-
alent to the usual definition. This is the statement of the so-called Straddle Lemma: if f is
differentiable at x0, then the limit in (2) exists so long as x and y approach x0 from opposite
sides. Despite being well known, discussion and proof of the Straddle Lemma is usually
confined to the context of Integration theory, and as such uses language and tools which
are out of reach to a beginner (see, for example, [1,2], [3, p. 2], [4, p. 138], [5, p. 670]). We
give an elementary proof of the Straddle Lemma which requires only discussion of limits
in two variables in addition to the machinery available to a student in a first course of Real
Analysis. This proof allows the student to see that the alternate geometric interpretation of
the tangent line as given in Figure 2 is indeed equivalent to the more traditional picture.

We further discuss strongly differentiable functions in Section 3 at the same level of the
presentation of the Straddle Lemma.
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2. Proving the Straddle Lemma

Since the limit (2) is a limit in two variables, we must give a suitable definition for this type
of limit in order to be able to discuss the Straddle Lemma in more detail. The following
definition is a natural extension of the definition of a limit in one variable.

Definition 2.1: LetD be a subset of R
2 and (x0, y0) ∈ R

2 [we do not require thatD contains
the point (x0, y0), but we do not exclude this possibility]. Assume that for any positive real
number s, we have that the ‘deleted’ square

R∗
s (x0, y0) = [(x0 − s, x0 + s) × (y0 − s, y0 + s)] \ {(x0, y0)}

satisfies D ∩ R∗
s (x0, y0) �= ∅. If ϕ is a real function of two variables defined on D, then we

write

lim
(x,y)→(x0,y0 )

ϕ(x, y) = L

if and only if for every ε > 0 there exists a δ > 0 such that for all (x, y) � (x0, y0) in D we
have that |x − x0| < δ and |y − y0| < δ imply

|ϕ(x, y) − L| < ε.

Remark 2.1: Now that we have a rigorous definition for the limit of a function in two vari-
ables, we agree to retroactively consider (2) as representing such a limit, where the quotient
[f(x)− f(y)]/(x− y) is regarded as a function in two variables defined for all (x, y) such that
x� y and both x and y are in the domain of f; the notation x, y→ x0 below the word ‘lim’ is
to be understood as (x, y) → (x0, x0). In the statement of Straddle Lemma 2.1, we will also
use a special notation to indicate a restriction on the domain where we will be taking the
limit.

We are now ready to state the Straddle Lemma.

Straddle Lemma2.1: Let f be a real function defined on the interval (a, b). If f is differentiable
at x0 � (a, b), then we must have

lim
(x,y)→(x−

0 ,x+
0 )

f (x) − f (y)
x − y

= f ′(x0), (3)

where the notation (x, y) → (x−
0 , x+

0 ) below the word ‘lim’means we are restricting the quo-
tient in the limit above to points (x, y) such that x � x0 � y.

Note that the restriction x � x0 � y in the limit (3) means that the limit is taken as x
approaches x0 from the left-hand side and y approaches x0 from the right-hand side. In
addition, the definition of a limit in two variables allows one of x or y to be set equal to x0,
provided that the other is not. This latter fact enables us to show that standard differentia-
bility follows from the existence of the limit on the left-hand side of Equation (3). Thus, we
have the following:
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Corollary 2.1: Let f be as in the statement of the Straddle Lemma, and let x0 � (a, b) (we do
not assume that f is differentiable at x0). Then f is differentiable at x0 if and only if

lim
(x,y)→(x−

0 ,x+
0 )

f (x) − f (y)
x − y

(4)

exists.

Proof: The Straddle Lemma shows that if f is differentiable at x0, then (4) exists. For the
other direction, assume (4) exists. Setting y = x0 in (4) and letting x approach x0 from the
left-hand side shows that the left-hand derivative of f exists at x0; analogously, setting x =
x0 in (4) and letting y approach x0 from the right-hand side establishes the existence of the
right-hand derivative of f at x0. Moreover, since we are assuming (4) exists, it follows that
the left-hand side and right-hand side derivatives must both be equal to the value of the
limit (4), so they must be equal to each other. Thus, f is differentiable at x0. �

Note also that while (3) is a limit in two variables, the proof below shows that it can be
reduced essentially to two limits in a single variable.

Proof of Straddle Lemma 2.1: Put

g(x) =
{ f (x)− f (x0)

x−x0
(x �= x0)

f ′(x0) (x = x0)
, h(y) =

{ f (y)− f (x0)
y−x0

(y �= x0)

f ′(x0) (y = x0)
.

To simplify the discussion, let D be the set of all (x, y) ∈ R
2 such that x, y � (a, b), x � x0

� y and x � y. We then have for all (x, y) � D:
∣∣∣∣ f (x) − f (y)

x − y
− f ′(x0)

∣∣∣∣ =
∣∣∣∣x − x0
x − y

g(x) + x0 − y
x − y

h(y) − (x − x0) + (x0 − y)
x − y

f ′(x0)
∣∣∣∣

≤
∣∣∣∣x − x0
x − y

∣∣∣∣ ∣∣g(x) − f ′(x0)
∣∣ +

∣∣∣∣x0 − y
x − y

∣∣∣∣ ∣∣h(y) − f ′(x0)
∣∣ .

Now note that since x and y are on opposite sides of x0, we have |x − x0| � |x − y| and
|x0 − y| � |x − y| (the possibility of equality must be considered because one of x, y may
be equal to x0). This allows us to write∣∣∣∣ f (x) − f (y)

x − y
− f ′(x0)

∣∣∣∣ ≤ ∣∣g(x) − f ′(x0)
∣∣ + ∣∣h(y) − f ′(x0)

∣∣ . (5)

Now pick ε > 0. Differentiability of f at x0 implies that there exists δ > 0 such that if x0 − δ

< x < x0 < y < x0 + δ, then

∣∣g(x) − f ′(x0)
∣∣ <

ε

2
and

∣∣h(y) − f ′(x0)
∣∣ <

ε

2
.

On the other hand, x = x0 implies g(x) = f ′(x0), so in this case we also have |g(x) − f ′(x0)|
< ε/2; analogously, y = x0 implies |h(y) − f ′(x0)| < ε/2. This shows that for any (x, y) � D
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such that |x− x0|< δ and |y− x0|< δ, the left-hand side of (5) is less than ε, which finishes
the proof.

Remark 2.2: We used the functions g, h in the foregoing proof to avoid the difficulty pre-
sented by the fact that when one of x, y is equal to x0, we cannot divide by x − x0 or y − x0
to form the single-variable differential quotients.

The conclusion of the Straddle Lemma fails to hold if we allow the pair (x, y) to approach
(x0, x0) freely, i.e. if we consider the limit (2) in place of the left-hand side of Equation (3).
To see an example, put

f (x) =
{
x2 sin

( 1
x

)
(x �= 0)

0 (x = 0)
.

Recall that as a consequence of the Squeeze theorem from elementary Calculus, if k(x) is
bounded and limx→x0 l(x) = 0, then limx→x0 k(x)l(x) = 0. This implies that f is differen-
tiable at 0with f ′(0)= 0.However, if we let x and y approach 0 via the sequences xn = 1/(π /2
+ nπ), yn = xn+1 we see that the limit (2) does not exist in this case: [f(xn) − f(yn)]/(xn −
yn) has limit 2/π if we restrict n to even integers and has limit −2/π for odd n.

This shows that the two-variable limit (2) defines a special kind of differentiability. We
briefly discuss this in the next section.

3. Strongly differentiable and continuously differentiable functions

For completeness, we now consider the situation when the limit (2) exists. For a more thor-
ough and general treatment, see [6–9].

Definition 3.1: A real function f defined on an interval (a, b) is said to be strongly differen-
tiable at a point x0 � (a, b) if

lim
(x,y)→(x0,x0)

f (x) − f (y)
x − y

(6)

exists.

Obviously, setting y = x0 in (6) shows that if f is strongly differentiable at x0, then it is
differentiable in the usual sense at x0 [and (6)must be equal to f ′(x0)]. On the other hand, in
light of the foregoing definition, we see that the example that concluded the previous section
shows that a function can be differentiable at a point without being strongly differentiable at
the same point. Thus, strong differentiability is indeed a stronger condition than ordinary
differentiability.

The next theorem relates strong differentiability of a function with the continuity of its
derivative.

Theorem 3.1: Let f be differentiable on the interval (a, b). Then, f is strongly differentiable at
x0 � (a, b) if and only if f ′ is continuous at x0.

We use an expanded version of the proof in [8, p. 971] adapted to our setting.
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Proof: Assume f is strongly differentiable at x0, and pick ε > 0. Let δ > 0 be such that if
distinct x, y satisfy |x − x0| < δ and |y − x0| < δ, then,

∣∣∣∣ f (x) − f (y)
x − y

− f ′(x0)
∣∣∣∣ <

ε

2

[we may assume δ is small enough so that (a, b) contains every such x, y – then, we need
not worry if f ′(x) and f ′(y) are defined]. Now fix x such that |x− x0|< δ. By differentiability
of f at x, there is δ′ > 0 such that 0 < |y − x| < δ′ implies

∣∣∣∣ f (y) − f (x)
y − x

− f ′(x)
∣∣∣∣ <

ε

2
.

Then, if we set δ1 = min {δ′, δ − |x − x0|}, both inequalities are satisfied for all y such that
0 < |y − x| < δ1. Applying the triangle inequality yields that 0 < |y − x| < δ1 implies

| f ′(x) − f ′(x0)| < ε,

but since this last inequality does not depend on y, we conclude that it holds if |x − x0| <
δ. This establishes one direction of the proof.

For the other direction, assume f ′ is continuous at x0 and again pick ε > 0. Let δ > 0 be
such that |ξ − x0| < δ implies |f ′(ξ ) − f ′(x0)| < ε. Now take any distinct x, y such that |x
− x0| < δ and |y − x0| < δ. By the Mean Value theorem,

f (x) − f (y)
x − y

= f ′(ξ ),

where ξ sits between x and y. Thus, |ξ − x0| < δ and

∣∣∣∣ f (x) − f (y)
x − y

− f ′(x0)
∣∣∣∣ = | f ′(ξ ) − f ′(x0)| < ε.

This concludes the proof. �

Theorem 3.1 shows that a function f is strongly differentiable on every point of an inter-
val if and only if f is continuously differentiable on the interval. Note, however, that strong
differentiability is a pointwise condition, while on the other hand, it does not make sense to
talk about a function being continuously differentiable at a single point. To emphasize this
distinction, we conclude with an example of a function which is strongly differentiable at 0
but not even differentiable on any open interval containing 0: define f by f(0)= 0, f(1/n)=
1/n2 for all nonzero integers, and complete the graph of f by connecting linearly the points
already defined.
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ABSTRACT
It is well known that mechanical engineering students often find
mechanics a difficult area to grasp. This article describes a system of
equations describing the motion of a balanced and an unbalanced
roller constrained by a pivot arm. A wide range of dynamics can be
simulatedwith themodel. The equations ofmotion are embedded in
a graphical user interface for its numerical solution in MATLAB. This
allows a student’s focus to be on the influence of different parameters
on the systemdynamics. The simulation tool can be used as a dynam-
ics demonstrator in a lecture or as an educational tool driven by the
imagination of the student. By way of demonstration the simulation
tool has been applied to a range of roller–pivot arm configurations.
In addition, approximations to the equations of motion are explored
and a second-ordermodel is shown to be accurate for a limited range
of parameters.

1. Introduction

Some mechanical engineering undergraduate students find mechanics a challenging topic.
This is a well-recognized problem [1–4]. The reason for this is complex and no one issue is
the root cause of this but one element of the problem is mechanics is a highly mathematical
topic that requires students to be more than competent in the formation and solution of
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